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ON APPROXIMATE METHODS OF ANALYSING CERTAIN SINGULARLY-PERTURBED SYSTEMS* 

L.K. KUZ'MINA 

A certain class of singularly-perturbed systems which have a variety of 
m-dimensional stationary positions is considered. When a small parameter 
disappears, the system also has an m-dimensional manifold of stationary 
positions and, therefore, the corresponding characteristic equation has m 
zero roots. The conditions under which the solution of a stability problem 
reduces to the same problem for a degenerate system are defined. As an 
application in practice gyroscopic stabilizing systems (the critical case 
corresponds to such systems) with elastic elements of high stiffness are 
discussed. The conditions under which the solution of the problem of the 
stability of steady motion follows from the solution of this problem for 
an ideal system (with absolutely rigid elements) are obtained. The problem 
of the closeness of the corresponding solutions of the complete and a 
simplified system of differential equations over an infinite time interval 
is discussed. 

1. Suppose the perturbed motion of a system is described by a differential equation of 
the form 

*Prikl.Matem.MeJ&an.,49,6,909-915,1985 
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Here L is an m-dimensional vector which corresponds to the Lyapunov-critical variables, 
xl(i = 1,2,3) are n&imensional vectors corresponding to the non-critical variables, the index 
'T' denotes transposition, p is a small positive parameter, P,(p) are matrices of correspond- 
ing dimensions whose elements are continuous functions of p, Ptr(p) are ng X nt sobmatrices 
(i,f = i,2,3), Z and Xt are certain functions which are holomorphic (in the corresponding 
domain) with respect to the aggregate of variables s and X, they do not contain in their 
expansions any terms below the second dimension, and their coefficients are continuous bounded 
functions of t and p. 

Let 2,X, (i= 1,2,3) vanish for x = 0; and let Pz, (I.I) = II&I (ph PZZ (p) = I&’ W 
The characteristic equation for system (1.1) has m zero roots. We will denote the equation 

which determines the remaining roots by 

d (k p) = 0 (1.2) 
without writing it in detail. 

Putting p = 0, we obtain from (1.1) the degenerate system 

dz’dt = Z. dx,.dt = P,x -!- X, (1.3) 

0 = P2& + Xz. dx,idt = P,x j- X, 

(2 = 2 (1, 0, 2, X), X, = Xl (t, 0, z* xf (i = 1, 2, 3) 

P, = P, (0). P?3 = Pz3 (01. P, = P3 (0)) 

Assuming that we are dealing with specific mechanical systems , we consider the case where 

n2 = n3, and at the same time the adiabatic equation 0 = Pz3x3 +- & from (1.3) admits of the 
unique solution x3 = 0. and the equation 0 = P,,x, i P,$Q + S, (t.0, z. x1.x1, 0) has the solution 
x1 = f (t, 2, x,). On substituting s3 = Oand x2 = C(i.r.x,)into the first two equations of system 
(1.3!, we obtain 

dz dt = Z’ (t, z> r,), dx, dt = P,,‘x, + S,’ (f. z. xl) (1.4) 

We take this system as a simplified version of (1.1). The characteristic equation of 
the shortened system has m zero roots, and the remaining roots are found from the equation 

1 i.E - P11’ i = 0 (PII’ = P,, - P12Pa2-‘P,,) (1.5) 

System (1.4) is of a lower order than the total system (1.11, and the following important 
problem arises from the practical point of view: under what conditions, for a sufficiently 
small parameter p, does the stability of the zero solution of the simplified system (1.4) imply 
the stability of the zero solution of the complete system 11.1)? A sirilar problem for 
differential equations with a small parameter in derivative terms has been discussed by many 
authors, for exampie in /l-5/, for cases different from the one discussed here. 

Taking into account /4, 5/ and making use of the corresponding Lyapunov theorems, one can 
show that for system (1.1) the following assertion is valid. 

Theorem 1. If for 

the equation 

uE - P~z’. - Pzs 

- P39, aE = 
0 (1.6) 

satisfies the Hurwitr condition, and all roots, with the exception of m zero roots of the 
characteristic equation of the simplified system, have negative real parts, then the zero 
solution of system (1.4) is stable, and for a sufficiently small parameter p, the zero solution 
of the complete system (1.1) is stable as well. 

Here the simplified system (1.4) has an integral of the form z+ ~((1, z, x,)= 13, and the 
complete system admits of the integral z + F(t, p, z,a)=A where q and F are non-linear 
holomorphic vector functions, with cf = 0 for x1 =O, and F=O for x=0, B and A being 
constant vectors. 

Under the conditions of the theorem, any solution of the form z = C, x = 0 (C is an arbitrary 
vector) will also be stable; here IIC/I is a fairly small quantity. 

2. As an application of the results obtained, we consider the stability of the sustained 
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motion of a gyrostabiiization system where a case which is critical (according to Lyapunov) 
arises under the asswption that the system's elements are not absolutely rigid. Such a system 
was discussed in /5/ where a simplified model was introduced with the additional condition 
that the gyroscopes have their own angular momenta. 

Here we shall consier a gyrostabilized system, assuming that the rigidity of its elastic 
elements is sufficiently high (but finite in contrast to the dieal, that is an absolutely rigid 
system). nor simplicity, we assume that the electric circuits of the tracking systems are 
delayless, and the differential equations of the perturbed motion (see /5/) are reduced to the 
form 

As in f5/, here qhr is the n-dimensional vector of the generalized mechanical coordinates, 
qn = II ql. q?, q3. q,V, where q1 is the l-dimensional vectox of the angles of precession of the 
gyroscopes,q2is the (m - l)-dimensional vector of the deviations of the angles of the gyroscopes' 
natural rotations from their steady-motion values,q, is the (s-mm)-dimensional vector of the 
angles of rotation of the rotors of the stabilizing motors (S = m i- I), q, is the (n -s)- 
dimensional deformation vector of the elastic elements, (I, b and g are square (n X nf-matrices 
of the quadratic form of the system's kinetic energy, the dissipation function of the friction 
forces, and the gyroscopic coefficient respectively, c=I]O,~.C~~C~(I~, with fg = II Ci)l. 0, 0, O/l, 

ca = II 0. 0. 0. rlaIj, c14 is a square (n -s) .% (n - s)-matrix which corresponds to the potential 
energy of the elasticity forces, b = 11 ti,. ba, b,. ball’ with hi = 11 bi,, bzZ, b,a. b,, /j (i = 1. 2, 3, 4), where 

bij are submatrices of the corresponding dimensions, b,, is a square (n - s) x (n - s)-matrix 
of the dissipation function of the internal friction forces in the material of solids, and 

g = 11 g1. g?. g,, PC LT. fir = ‘il PII. gi:. g13. R,4 It (I = 1, 2.3.4). where gij are submatrices of corresponding 
dimensions of the matrix g. The circles denote the zero-order terms rn the expansions of the 
corresponding functions. 

Consider systems with fairly stiff elements. Let c4, = c,~*,P~. b,, = b4(*.p, where p is a 
small dimensionless positive parameter. A model of this kind was discussed in /7/. 

Let us reduce system (2.1) to the form (1.1). We introduce new variables 

x2 = 0,q.v ‘. 41 == 91. q, = 94 

where z. x,. x2 are m-. s-. and (n-s) -dimensional vectors, and O, (i = I. 2, 3, 4). bj and g, 
(j = 1, 2) axe submatrices, of cerresponding dimensions of the matrices a, b and g respectively. 

The above transformation is non-linear, and non-singular, and under the condition 

is uniforn.ly regular and does not change the formulation cf the stability probiem. 
I r. the new variables, system :2.lj becomes 

dz z dx, -= ) 
df 

-=- 
at 

12.2) 

Here P,j(i. j = 1,2) are s.LbXatrices, of ccrrespcnSi.ng dimensions, of the matrix e = (b(p) -t 
g (u) d. d =o-l = 11 dl. d2. d,. d, llJ. d, = // Ii,. /i2ii(i = 1, 3. 3’, 4). di and 1,) are submatrices, of 
corresponding dimensions cf tiie matrix d, z are critical variables, x,. x2, q,,q4 are non- 

crlticai variables, Z.K1, li: dencte non-linear vector functions holomorphic with respect to 
the aggregate of the variables 2: x,,x?. ql, qr, whici? vanish for zero values of the non-critical 
variables. 

Notice that system (2.3, has the farrr: 

Here 
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1 
I 

.s_-- 

P ll = 
- q,O I- O I 

, -cm0 I &a= 
I- else I 

__-___:_-___. 
Lo ! 0 I \--g-1’ P1,=O 

e,P, 0 II, Pu (p) = -err”, Pt, = -c44” 
PI, = II lrlo, 0 II, Paz = 4f, 
PZl (P) = ppsi (cc)! 

PSI = 0, 
p22 (I4 = wr’ (PI 

on subsituting p = 0 we obtain a degenerate system. At the same time, taking into 
accout the fact that for the systems discussed Icrc*I#O, 11~ 1 #O, taking q,=O, %=-_Irr-V,,x, 
and subsituting these expressions into the first two equations of (2.3'),we can represent this 
system in the form 

dz z 0 
dt= I Jf$=e,'x, + 

I I 
_ C,rO 91 + G'S % =h'x1 (2.4) 

(the primes denote the corresponding transformed matrices and vector functions obtained as a 
result of the substitution). 

We take (2.41 as a simplified system for (2.3). In the old variables the system 

~=*q.+(b++g*)q’+~*q=Q*, -$-=q’ (2.5) 

corresponds to (2.4). Here q = 11 q,,qz, qSJJT is an s-dimensional vector of the generalized 
coordinates which describe the state of the absolutely stiff system, and a*, b*,g*, c* are 
square (sXS)-matrices corresponding to an absolutely stiff mechanical system. 

We note that the differential Eq.(2.5), which form a system of lower order compared with 
(2.1), describe the motion of a mechanical system whose elements possess absolute rigidity. 

We pose the following problem: under what conditions is it permissible to use Eq.(2.5) 
instead of the initial Eq.(2.1) (that is, we allow a transition from the model of a mechanical 
system which takes into account the real properties, to its idealized (absolutely rigid) model)? 

Following the results obtained in Sect.1, it can be shown that if for 

the equation 

satisfies the Hurwitz condition, and the characteristic equations of the linear approximation 
system for (2.4) have all their roots (with the exception of m zero roots) in the left half- 

plane, then for sufficiently small p the stability of a zero solution of the simplified 
system (2.4) secures the stability of the zero solution of the complete system (2.3) as well. 
Turning to the old variables we note that the equation 

Q1° 

allca2j a‘,'at i_ b,,*'a - cII 
-0 to - (2.7) 

(Qr = I/ 01, 32, Qrii=, QII = It Q,,. Qcz. Q43 11) 

corresponds to Eq.(2.6). Eq.(2.7) satisfies, as shown in /7/, for the mechanical systems 
discussed, the Huxwitz condition for any value of the system's parameters with physical meaning 
(here Q,~ (i = I, x,3,4) are submatrices, of corresponding dimensions. of the matrix a). This 
proves the theorem. 

Theorem 2. If, under condition (2.2) and for Icsl"I#O , all roots (with the exception 
of m zero roots) of the characteristic equations of the simplified system (2.5) have negative 
real parts, then the zero solution of this system is stable , and for a sufficiently small 
parameter p (with sufficiently high rigidity of the system's elements) the zero solution of 
the complete system (2.1) is stable as well. 

The simplified system (2.5) admits of an integral of the form 

and the complete system an integral of the form 
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Note. lo. Theorem 2 has been proved for gyrostabilizing systems, but all the operations 
are easily extended to the general case of mechanical systems without gyroscopes, for which 
an analogous assertion holds. 

Note. 2'. Theorem 2 refers to the case of non-asymptotic stability of the zero solution, 
but a similar result is obtained when the zero solution is asymptotic. 

The results obtained define the conditions which make it possible , in solving the stability 
problem forthe systems discussed, to use the simplified model of a lower order corresponds to 
an absolutely rigid mechanical system. 

3. For the mechanical systems discussed in Sect.2, we pose the problem of the closeness 
of the solutions of the complete and simplified systems of differential equations. Let qi = 
q, (t. H)? q,' = q,‘(t. p)(i = 1, 2. 3, 4) be a solution of system (2.1) with the initial condition q,. = 
ql (to. p).qi; = q,’ (f,,p); we denote the solution of the simplified system (2.5) by q,* = q,* (2), 
‘I,‘* = q;* (2) (1 = 1, 2. 3, 4) which is determined by the initial conditions q,O* = qi* (t,), qio’* = 
qi’* (t,)(i = 1, 2. 3). qd* = 0. qa'* = 0. 

Let us find the conditions under which the corresponding solutions of the complete and 
simplified systems are close in an infinite time interval. Applying the methods of the theory 
of stability in combination with that of singularly-perturbed equations (see /S-lo/), we 
consider the differential equations for the deflections which correspond to the non-critical 
variables, use the integrals which occur for the systems in question, and allow for the special 
features of these systems given in Sect.2. Then we can show that the following assertion holds. 

Theorem 3. If condition (2.2) is satisfied, and if ~cnc~#O and all roots (with the 
exception of m zero roots) of the characteristic equation for the simplified system (2.5) are 
in the left half-plane, then for a sufficiently small parameter p, for the previously specified 
numbers i >"I and I]> il (where t is as small as desired) there exists Ht such, that in 
perturbed motion when (i < 1' < p* fcr all 1) I*> 16, the relations 

ll9> - q,* I/ < 't, /I q; = qi** I/ < E; (i = 1. 2. 3. 4) 

are satisified if q,o = q,o*, q,o’ = q,o’* (j = 1. 2. 3). (/q,o 1) < 11.ll q,ti’ 1) < 11. Here by selecting 
sufficiently small H,the \Talue of 1, can be made as close to lo as desired. 

Note that many papers have beer. devcted to various problems of the dynamics of mechanical 
systems with elastic elements cf high stiffness; for example, the questions of constructing 
asymptotic forms of the so lurions of differential eqilations (see 111, 12/j, or the stability 
problems for specific types cf gyrostab;lizers, /13, 14/', etc. As mentioned above, for the 
gyroscopic systems discussed in the present paper, no assumption regarding the large magnit%Jde 
of the angular momenta of gyroscopes is made (unlike in /5/j, and the equation of precession 
theov, which has been studied by many authors (for example, in /14-19/etc.), are not considered 
here. The results obtained in the present paper complement previous studies, substantiate, for 
the system discussed above, the feasibility of using the simplified model employed, and make 
it possible to use the approximate equations and solution in dealing with the problems in 
q.iestion. 
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ON THE STABILITY OF THE VERTICAL ROTATION OF A SOLID SUSPENDED ON A ROD* 

V.N. RUBAh'OVSKII 

The problem of the motion of a dynamically symmetric solid suspended from 
a fixed point by a weightless rod and two ball and socket joints one of 
which is fixed at the fixed point 0' , and the other is on the body axis 
of symmetry at the point 0 is considered. The question of the stability 
of the uniform body rotation when points 0' and 0, and the body centre of 
inertia C lie on the same vertical, and at the same time point 0 may be 
either above or below point 0', and point C either above or below point 0, 
is discussed. An analysis of the necessary and sufficient conditions for 
stability is given. The set of all the system's parameters is reduced to 
three independent dimensionless parameters L,R and 6, and in the plane 
(L,Q), for fixed values of b, the regions for which the unperturbed rotation 
is steady, or steady to a first approximation, or non-steady are indicated. 
The regions for which the body rotation is steady to a first approximation 
when the point 0 is situated higher than the point 0', and the point C 
lies higher or lower than the point 0 are determined. 

The sufficient conditions for the vertical rotation of a dynamically 
symmetric body suspended on a filament were obtained in /l/ and investigated 
for the cases where in non-perturbed motion the point C is below point 0, 
when points C and 0 coincide, and when the length of the filament is zero 
(Lagrange gyroscope). In /2/ an analysis is given of the sufficient 
conditions for stability obtained in /l/, and also the necessary conditions 
for the cases where in a non-perturbed motion point C is located above 
point 0. 

1. Consider, in a uniform field of gravity, the motion of a dynamically symmetric solid 
suspended on a thin straight weightless rod and two ball and socket joints, one of them being 
the fixed point 0', and the other located on the axis of symmetry of the body at point 0. 

We adopt the coordinate system Or,r*r, whose axes are invariably linked with the body 
and directed along its principal axes of inertia for the point 0. Let us introduce the 
following notation: m, JC is the mass and the tensor of inertia of the body for its centre 
of mass C, with the diagonal elements J1 = Jz,Ja; Q), Kc = Jc.0, are the angular velocity and 
the momentum of thebody, computed for point C, a is the radius vector of point C relatively 
to point 0, v is the velocity of point 0. y is the unit vector of the upward vertical, 1 
is the length of the rod,e is the unit vector directed along the rod to point 0', 8 is the 
acceleration due to gravity, and N is the reaction of the rod. We shall express all vectors 
by their projections 01, Kc, = J,oi, UY, vi, ei, ai on the z1 axis (i = I, 2,3,) with a, = a, - 0, 
a, =i a. 
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